Intuitionistic Q-Fuzzy Strong Bi-ideals of Near-rings

P. Murugadas ${ }^{1}$, Assistant Professor, Department of Mathematics, Govt. Arts and Science College, Karur, India, bodi_muruga@yahoo.com
V. Vetrivel ${ }^{2}$, Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar, India, vetrivelmath @gmail.com

Abstract

In this paper, we introduce intuitionistic Q-fuzzy strong bi-ideals of a near-rings and investigate some of their related properties.

Keywords — Fuzzy Bi-ideal, Q-Fuzzy Bi-ideals, Intuitionistic fuzzy bi-ideals and Intuitionistic Q-fuzzy strong bi-ideals.

I. Introduction

In 1965, Zadeh [13] took a collection of objects which fail to satisfy the condition of a set and he called it as fuzzy set. After the emergence of fuzzy concept, it evolved in all branches of Science and Engineering and Rosenfeld [10] the one who first used this idea in group theory. As a generalization Liu [6] extended this fuzzy concept to ideal theory in ring. Abou-Zaid [1] fuzzified near-ring and applied it to ideals. One of the important generalization of fuzzy set is intuitionistic fuzzy set which was introduced by Atanassov [2].

Biswas [3] introduced intuitionistic fuzzy subgroups of a group. Jun, Kim and Yon [5] studied intuitionistic fuzzy Rsubgroups of near-rings. Fuzzy bi-ideals of near-ring is presented in [9]. In this paper, we come across IQFS (in briefly intuitionistic Q-fuzzy strong) bi-ideal of a near-ring and obtain the characterization of a strong bi-ideal in terms of a IQFS- bi-ideal of a near-ring.

II. Preliminaries

A nonempty set N together with two binary operations " + " and "." is said to be a near-ring, if

- N is a group under the operation " + ", it is a semigroup under the operation "." and "." right distributive over addition.
- Let A and B be two subsets of N, the product of A and B is defined as
$A B=\{a b / a \in A, b \in B\}$. Also we define another product "*" as
$A * B=\{a(b+i)-a b / a, b \in A, i \in B\}$.
- $0 x=0$. In general $x 0 \neq 0$, for some x in N. If $x 0=0$, for all x in N, then N is zero symmetric. A subgroup A of $(N,+)$ is called a bi-ideal of near-ring N if $A N A \cap(A N) * A \subseteq A$.

A function A from a non-empty set X to the unit interval [0,1] is called a fuzzy subset of N. Let Q be a nonempty set. An intuitionistic Q-fuzzy subset μ of N is an object having the form
$\mu=\left\{\left(x, A_{\mu}(x, q), B_{\mu}(x, q)\right) / x \in N\right\}$, where the functions $A_{\mu}: N \times Q \rightarrow[0,1]$ and $B_{\mu}: N \times Q \rightarrow[0,1]$ denote the degree of membership and degree of non membership of each element $x \in N$ to the set μ, respectively, and $0 \leq A_{\mu}(x, q)+B_{\mu}(x, q) \leq 1$ for all $x \in N$. In brief, we shall use the symbol $\mu=\left(A_{\mu}, B_{\mu}\right)$ for the intuitionistic fuzzy subset $\mu=\left\{\left(x, A_{\mu}(x, q), B_{\mu}(x, q)\right) / x \in X\right\}$. For the definition of the Q-fuzzy subgroup, subnear-ring and intuitionistic Q-fuzzy ideals of near-ring refer [7].

Let $\mu=\left(A_{\mu}, B_{\mu}\right)$ and $\lambda=\left(A_{\lambda}, B_{\lambda}\right)$ be two intuitionistic fuzzy subsets of N. We define an intuitionistic Q-fuzzy "*" product in near-ring as follows.

$$
(\mu * \lambda)(x, q)=\left\{\begin{array}{l}
\left\{\operatorname { s u p } _ { x = a (b + i) - a b } \left\{\operatorname { m i n } \left\{A_{\mu}(a, q), A_{\mu}(b, q),\right.\right.\right. \\
\left.\left.B_{\mu}(i, q)\right\}\right\}, \\
\inf _{x=a(b+i)-a b}\left\{\operatorname { m a x } \left\{A_{\lambda}(a, q), A_{\lambda}(b, q),\right.\right. \\
\left.\left.\left.B_{\lambda}(i, q)\right\}\right\}\right\} ; \\
\text { if } x=a(b+i)-a b, a, b, i \in N \\
\text { and } q \in Q . \\
{[0,1], \quad \text { Otherwise. }}
\end{array}\right.
$$

III. IQFS- BI-IDEAL of NEAR-RING

Definition 3.1 An intuitionistic Q-fuzzy bi-ideal $\mu=\left(A_{\mu}, B_{\mu}\right)$ of N is called an IQFS- bi-ideal of N, if
(i) $N \circ A_{\mu} \circ A_{\mu} \subseteq A_{\mu}$
(ii) $N \circ B_{\mu} \circ B_{\mu} \supseteq B_{\mu}$

Example 3.2 Let $N=\{0, x, y, z\}$ be the klein's four group. Define " + " and "." is defined as follows.

+	0	x	y	z
0	0	x	y	z
x	x	0	z	y
y	y	z	0	x
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	0	x	0
y	0	0	y	0
z	0	0	z	0

Define a fuzzy subset $\mu=\left(A_{\mu}, B_{\mu}\right)$ where $A_{\mu}: N \times Q \rightarrow[0,1]$ by
$\cap_{i \in I} A_{\mu_{i}}(x-y, q)=\min \left\{A_{\mu_{i}}(x-y, q) / i \in I, q \in Q\right\}$ $\geq \min \left\{\min \left\{A_{\mu_{i}}(x, q), A_{\mu_{i}}(y, q) i \in I, q \in Q\right\}\right\}$
(since $A_{\mu_{i}}$ is an IQF-subgroup of N.)
$=\min \left\{\cap_{i \in I} A_{\mu_{i}}(x, q), \cap_{i \in I} A_{\mu_{i}}(y, q) / i \in I\right.$,
$q \in Q\} \cup_{i \in I} B_{\mu_{i}}(x-y, q)$
$=\max \left\{B_{\mu_{i}}(x-y, q) / i \in I, q \in Q\right\} \leq \max \left\{\max \left\{B_{\mu_{i}}(x)\right.\right.$,
$\left.\left.B_{\mu_{i}}(y, q)\right\} / i \in I, q \in Q\right\}$
(since $B_{\mu_{i}}$ is an IQF-subgroup of N)
$=\max \left\{\cup B_{\mu_{i}}(x, q), \cup_{i \in I} B_{\mu_{i}}(y, q) / i \in I\right\}$
Therefore $\cap_{i \in I} \mu_{i}$ be an IQF-subgroup of N.
To prove: $\cap_{i \in I} \mu_{i}$ be an IQF-bi-ideal of N.
Since $A_{\mu}=\bigcap_{i \in I} A_{\mu_{i}} \subseteq A_{\mu_{i}}$, for every $i \in I$, we have for all $x \in N$.

$$
\left(\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)\right)(x, q)
$$

$$
\left(A_{\mu} \circ N \circ A_{\mu}\right)(0, q)=0.3,\left(A_{\mu} \circ N \circ A_{\mu}\right)(x, q)=0.3, \quad \leq\left(\left(A_{\mu_{i}} \circ N \circ A_{\mu_{i}}\right) \cap\left(\left(A_{\mu_{i}} \circ N\right) * A_{\mu_{i}}\right)\right)(x, q)
$$

$$
\left(A_{\mu} \circ N \circ A_{\mu}\right)(y, q)=0.3,\left(A_{\mu} \circ N \circ A_{\mu}\right)(z, q)=0.3
$$

(since $A_{\mu_{i}}$ be an IQF-bi-ideal of N).

$$
\left(N \circ A_{\mu} \circ A_{\mu}\right)(0, q)=0.3,\left(N \circ A_{\mu} \circ A_{\mu}\right)(x, q)=0.3
$$

$\leq A_{\mu_{i}}(x, q)$ for every $i \in I$ and $q \in Q$.

$$
\left(N \circ A_{\mu} \circ A_{\mu}\right)(y, q)=0.3,\left(N \circ A_{\mu} \circ A_{\mu}\right)(z, q)=0.3
$$

It follows that

$$
\begin{aligned}
& \left(\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)\right)(x, q) \\
& \quad=\inf \left\{A_{\mu_{i}}(x, \bar{q}): i \in I\right\} \\
& \quad=\left(\cap_{i \in I} A_{\mu_{i}}\right)(x, q) \\
& \quad=A_{\mu}(x, q)
\end{aligned}
$$

Thus $\left(\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right) \subseteq A_{\mu}\right.$
Since $B_{\mu}=\cup_{i \in I} B_{\mu_{i}} \supseteq B_{\mu_{i}}$ for some $i \in I$, we
$\left(N \circ B_{\mu} \circ B_{\mu}\right)(0, q)=0.9,\left(N \circ B_{\mu} \circ B_{\mu}\right)(x, q)=0$. ghave for all $x \in N$.
$\left(N \circ B_{\mu} \circ B_{\mu}\right)(y, q)=0.9,\left(N \circ B_{\mu} \circ B_{\mu}\right)(z, q)=0.9\left(\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)\right)(x, q)$
and so B_{μ} is an IQFS-bi-ideal of N. Thus $\mu=\left(A_{\mu}, B_{\mu}\right)$ is an IQFS-bi-ideal of N.

Theorem 3.3. Let $\mu_{i}=\left\{\left(A_{\mu_{i}}, B_{\mu_{i}}\right): i \in I\right\}$ be any collection of IQFS-bi-ideals in a near-ring N. Then $\cap_{i \in I} \mu_{i}$ is an IQFS-bi-ideal of N where $\cap_{i \in I} \mu_{i}=\left\{\left(\cap_{i \in I} A_{\mu_{i}}, \cup_{i \in I} B_{\mu_{i}}\right)\right\}$.
Proof. Let $\left\{\mu_{i}: i \in I\right\}$ be any collection of IQFS-bi-ideals of N.
Now for all $x, y \in N$ and $q \in Q$,
$\geq\left(\left(B_{\mu_{i}} \circ N \circ B_{\mu_{i}}\right) \cup\left(\left(B_{\mu_{i}} \circ N\right) * B_{\mu_{i}}\right)\right)(x, q)$
$\geq B_{\mu_{i}}(x, q)$ for some $i \in I$ and $q \in Q$.
It follows that

$$
\begin{aligned}
& \left(\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)\right)(x, q) \\
& \quad \geq \sup \left\{B_{\mu_{i}}(x, q): i \in I, q \in Q\right\} \\
& \quad=\cup_{i \in I} B_{\mu_{i}}(x, q) \\
& \quad=B_{\mu}(x, q)
\end{aligned}
$$

Thus $\left(\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)\right) \supseteq B_{\mu}$
Thus $\cap_{i \in I} \mu_{i}$ be an IQF-bi-ideal of N.
To prove: $\cap_{i \in I} \mu_{i}$ be an IQFS-bi-ideal of N.

Now for all $x \in N$, since $A_{\mu}=\cap_{i \in I} A_{\mu_{i}} \subseteq A_{\mu_{i}}$, for every $i \in I$, we have

$$
\begin{aligned}
& \left(N \circ A_{\mu} \circ A_{\mu}\right)(x, q) \leq\left(N \circ A_{\mu_{i}} \circ A_{\mu_{i}}\right)(x, q) \\
& \leq \quad A_{\mu_{i}}(x, q) \text { for every } i \in I, q \in Q . \\
& \quad \text { It follows that, }
\end{aligned}
$$

$$
\begin{aligned}
& \left(N \circ A_{\mu} \circ A_{\mu}\right)(x, q) \leq \inf \left\{A_{\mu_{i}}(x): i \in I, q \in Q\right\} \\
& \quad=\left(\cap_{i \in I} A_{\mu_{i}}\right)(x, q) \\
& \quad=A_{\mu}(x, q) .
\end{aligned}
$$

Thus $N \circ A_{\mu} \circ A_{\mu} \subseteq A_{\mu}$.
Now for all $x \in N$, since $B_{\mu}=\cup_{i \in I} B_{\mu_{i}} \supseteq B_{\mu_{i}}$, for some $i \in I, q \in Q$, we have

$$
\begin{aligned}
& \left(N \circ B_{\mu} \circ B_{\mu}\right)(x, q) \geq\left(N \circ B_{\mu_{i}} \circ B_{\mu_{i}}\right)(x, q) \\
& \quad \geq B_{\mu_{i}}(x, q) \text { for every } i \in I, q \in Q
\end{aligned}
$$

It follows that,

$$
\begin{aligned}
& \left(N \circ B_{\mu} \circ B_{\mu}\right)(x, q) \geq \sup \left\{B_{\mu_{i}}(x, q): i \in I, q \in Q\right\} \\
& \quad=\left(\cup_{i \in I} B_{\mu_{i}}(x, q)\right) \\
& \quad=B_{\mu}(x, q) .
\end{aligned}
$$

Thus $N \circ B_{\mu} \circ B_{\mu} \supseteq B_{\mu}$.
$\cap_{i \in I} \mu_{i}$ be an IQFS-bi-ideal of N.

Theorem 3.4 Every IQF-left N-subgroup of N is an IQFS-bi-ideal of N.
Proof. Let $\mu=\left(A_{\mu}, B_{\mu}\right)$ be an IQF-left N-subgroup of N.

To prove: μ is an IQFS-bi-ideal of N.
First we prove: μ is an IQF-bi-ideal of N.
Choose $l, m, n, s, t, i, n_{1}, n_{2}, s_{1}, s_{2}, t_{1}, t_{2}$ in N such that $l=m n=s(t+i)-s t, n=n_{1} n_{2}, s=s_{1}, s_{2}$ and $t=t_{1} t_{2}$.
$\leq \min \left\{\sup \min \left\{N(m, q), A_{\mu}(m n, q)\right\}\right.$,

$$
\begin{aligned}
& N(s(t+i)-s t)\} \\
& \quad=A_{\mu}(m n, q)=A_{\mu}(l, q)
\end{aligned}
$$

Thus $\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right) \subseteq A_{\mu}$.
Choose $l, m, n, s, t, i, m, n_{1}, n_{2}, s_{1}, s_{2}, t_{1}, t_{2} \quad$ in N such that $(l, q)=(m n, q)$
$=s(t+i)-s t, n=n_{1}, n_{2}, s=s_{1} s_{2}$ and $t=t_{1} t_{2}$
Then

$$
\begin{aligned}
& \left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)(l, q) \\
& =\max \left\{\left(B_{\mu} \circ N \circ B_{\mu}\right)(l, q),\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)(l, q)\right\}
\end{aligned}
$$

$$
=\max \left\{\inf _{l=m n} \max \left\{\left(B_{\mu}(m, q),\left(N \circ B_{\mu}\right)(n, q)\right)\right\}\right.
$$

$$
\left.\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)(s(t+i)-s t)\right\}
$$

$$
=\max \left\{\inf _{l=m n} \max \left\{B_{\mu}(m, q), \inf _{n=n_{1} n_{2}} \max \left\{N\left(n_{1}\right), B_{\mu}\left(n_{2}\right)\right\}\right\},\right.
$$

$$
\left.\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)(s(t+i)-s t, q)\right\}
$$

$$
=\max \left\{\inf _{l=m n} \max \left\{B_{\mu}(m, q), \inf _{n=n_{1} n_{2}} B_{\mu}\left(n_{2}\right)\right\}\right.
$$

$$
\left.\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)((s(t+i)-s t), q)\right\}
$$

$$
\geq \max \left\{\inf _{l=m n} \max \left\{N(m, q), B_{\mu}(m n, q)\right\}\right.
$$

$$
N(s(t+i)-s t)\}=B_{\mu}(s t, q)=B_{\mu}(l, q)
$$

Thus $\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right) \supseteq B_{\mu}$.
Next we prove: μ is an IQFS-bi-ideal of N.
Choose $l, m, n, n_{1}, n_{2} \in N$ and $q \in Q$ such that $l=m n$ and $n=n_{1} n_{2}$. Then
$\left(N \circ A_{\mu} \circ A_{\mu}\right)(l, q)$
$=\operatorname{supmin}_{l=m n}\left\{N(m, q),\left(A_{\mu} \circ A_{\mu}\right)(n, q)\right\}$
$=\sup _{l=m n} \min \left\{N(m, q), \sup _{n=n_{1} n_{2}} \min \left\{A_{\mu}\left(n_{1}, q\right), A_{\mu}\left(n_{2}, q\right)\right\}\right\}$
$=\sup _{l=m n} \min \left\{1, \sup _{n=n_{1} n_{2}} \min \left\{A_{\mu}\left(n_{1}, q\right), A_{\mu}\left(n_{2}, q\right)\right\}\right\}$

Then

$$
\left.\left.\left.A_{\mu}\left(n_{2}\right)\right\},\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)(s(t+i)-s t)\right\}\right\}
$$

$$
\begin{aligned}
& =\min \left\{\sup _{l=m n} \min \left\{A_{\mu}(m, q),\left(N \circ A_{\mu}\right)(n, q)\right\},\right. \\
& \left.\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)(s(t+i)-s t)\right\} \\
& =\min \left\{\operatorname { s u p } _ { l = m n } \operatorname { m i n } \left\{A_{\mu}(m, q), \sup _{n=n_{1} n_{2}} \min \left\{N\left(n_{1}\right),\right.\right.\right. \\
& \left.\left.\left.A_{\mu}\left(n_{2}\right)\right\},\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)(s(t+i)-s t)\right\}\right\} \\
& =\min \left\{\operatorname { s u p } _ { l = m n } \operatorname { m i n } \left\{A_{\mu}(m, q), \sup _{n=n_{1} n_{2}} \min \left\{N\left(n_{1}\right),\right.\right.\right. \\
& =A_{\mu}\left(\left(m n_{1}\right) n_{2}, q\right) \\
& >A_{\mu}\left(n_{2}, q\right) \\
& \leq \sup \min \left\{N\left(n_{1}, q\right), A_{\mu}(m n, q)\right\} \\
& =\sup \min \left\{1, A_{\mu}(m n, q)\right\} \\
& =A_{\mu}(m n, q) \\
& =A_{\mu}(l, q)
\end{aligned}
$$

Choose $l, m, n, n_{1}, n_{2} \in N$ and $q \in Q$ such that $l=m n$ and $n=n_{1}, n_{2}$. Then

$$
\begin{aligned}
\left(N \circ B_{\mu} \circ B_{\mu}\right)(l, q) & =\inf _{l=m n} \max \left\{\left(N(m), B_{\mu} \circ B_{\mu}\right)(n, q)\right\} \\
& =\inf _{l=m n} \max \left\{B_{\mu}\left(n_{1}\right), B_{\mu}\left(n_{2}\right)\right\} \\
& B_{\mu}(m n, q)=B_{\mu}\left(m n_{1} n_{2}, q\right) \\
& \left.=B_{\mu}\left(\left(m n_{1}\right) n_{2}, q\right) \leq B_{\mu}\left(n_{2}, q\right)\right) \\
\geq & \inf _{l=m n} \max \left\{N\left(n_{1}, q\right), B_{\mu}(m n, q)\right\} \\
& =\inf _{l=m n} \max \left\{0, B_{\mu}(m n)\right\} \\
& =B_{\mu}(m n, q) \\
& =B_{\mu}(l, q)
\end{aligned}
$$

Thus $\mu=\left(A_{\mu}, B_{\mu}\right)$ be an IQFS-bi-ideal of N.
Theorem 3.5. Every IQF-left ideal of N is an IQFS-biideal of N.
Proof. Let $\mu=\left(A_{\mu}, B_{\mu}\right)$ is an IQF-left ideal of N.
To prove: μ is an IQFS-bi-ideal of N.
First we prove: μ is an IQF-bi-ideal of N.
Choose $l, m, n, s, t, i, m_{1}, m_{2}, s_{1}, s_{2}, t_{1}, t_{2}$ in N and $q \in Q$ such that

```
    \(l=m n=(s(t+i)-s t, q), m=\left(m_{1} m_{2}, q\right), s=s_{1} s_{2}\)
``` and \(t=t_{1} t_{2}\). Then
\(\left(\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)\right)(l, q)=\min \left\{A_{\mu} \circ N \circ A_{\mu}(l, q),\left(\left(A_{\mu} \circ N\right)_{(\mathrm{c}, \mathrm{q})}^{a=b c} * A_{\mu}\right)(l, q)\right\}\) \(=\min \left\{\sup _{l=m n} \min \left\{\left(A_{\mu} \circ N\right)(m, q), A_{\mu}(n, q)\right\}\right.\),
\(\left.\left(\left(A_{\mu} \circ N\right) * A_{\mu}\right)(s(t+i)-s t, q)\right\}\)
\(=\min \left\{\sup _{l=m n} \min \left\{\left(A_{\mu} \circ N\right)\left(m_{1} m_{2}\right), A_{\mu}(n, q)\right.\right.\),
\(\left.\left.\sup _{l=s(t+i)-s t} \min \left(\left(A_{\mu} \circ(s),\left(A_{\mu} \circ N\right)(t, q), A(i, q)\right)\right)\right\}\right\}\)
(Since, \(\left.A_{\mu}((s(t+i)-s t), q) \geq\left(A_{\mu}(i, q)\right)\right)\)
\(\leq \min \left\{\sup _{l=m n} \min \left\{N\left(m_{1} m_{2}, q\right), N(n, q)\right\}\right\}\),
\[
\begin{aligned}
& \sup _{l=s(t+i)-s t} \min \left\{N(s, q), N(t, q), A_{\mu}((s(t+i)-s t), q)\right\} \\
& =A_{\mu}((s(t+i)-s t), q)=A_{\mu}(l, q) \\
& \quad \text { Thus }\left(A_{\mu} \circ N \circ A_{\mu}\right) \cap\left(\left(A_{\mu} \circ N\right)^{*} A_{\mu}\right) \subseteq A_{\mu} .
\end{aligned}
\]

Choose \(l, m, n, s, t, i, m_{1}, m_{2}, s_{1}, s_{2}, t_{1}, t_{2}\) in \(N\) and \(q \in Q\) such that
\(l=m n=(s(t+i)-s t, q) m=m_{1} m_{2}, s=s_{1} s_{2}\) and \(t=t_{1} t_{2}\). Then
\(\left(\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)\right)(l, q)\)
\(=\max \left\{B_{\mu} \circ N \circ B_{\mu}(l, q)\right.\),
\(\left.\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)(l, q)\right\}\)
\(=\max \left\{\inf _{l=m n} \max \left(B_{\mu} \circ N\right)(m, q), B_{\mu}(n, q)\right.\),
\(\left.\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right)((s(t+i)-s t), q)\right\}\)
\(=\max \left\{\inf _{l=m n} \max \left(B_{\mu} \circ N\right)\left(m_{1} m_{2}, q\right), B_{\mu}(n, q)\right\}\),
\(\inf _{l=s(t+i)-s t} \max \left\{\left(B_{\mu} \circ N\right)(s, q),\left(B_{\mu} \circ N\right)(t, q), B_{\mu}(i, q)\right\}\)
\[
\left.B_{\mu}(s(t+i)-s t) \leq B_{\mu}(i, q)\right) \geq
\]
\(\max \left\{\inf _{l=m n} \max \left(N\left(m_{1} m_{2}\right), N(n, q)\right\}\right.\),
\[
\begin{aligned}
& \inf _{l=s(t+i)-s t} \max \{N(s, q), N(t, q)\} \\
& \left.\left.B_{\mu}(s(t+i)-s t) \leq B_{\mu}(i, q)\right)\right\} \\
& \quad=B_{\mu}(s(t+i)-s t, q)=B_{\mu}(l, q)
\end{aligned}
\]

Therefore \(\left(B_{\mu} \circ N \circ B_{\mu}\right) \cup\left(\left(B_{\mu} \circ N\right) * B_{\mu}\right) \supseteq B_{\mu}\).
Thus \(\mu=\left(A_{\mu}, B_{\mu}\right)\) be IQF-bi-ideal of \(N\).
Next we prove: \(\mu\) be an IQFS-bi-ideal of \(N\).
Choose \(a, b, c, b_{1}, b_{2} \in N\) and \(q \in Q\) such that
\(a=b c=((b(n+c)-b n), q)\). Then
\(\left(N \circ A_{\mu} \circ A_{\mu}\right)(a, q)\)
\(=\sup _{a=b c} \min \left\{\left(N \circ A_{\mu}\right)(b, q), A_{\mu}(c, q)\right\}\)
\(=\sup _{a=h}\left\{\min \left\{\sup _{b=b, b} N\left(b_{1}\right), A_{\mu}\left(b_{2}\right), q\right)\right\}\),
\(\left.=\sup _{a=b c}\left\{\min \left\{\sup _{b=b_{1} b_{2}} A_{\mu}\left(b_{2}\right), q\right)\right\}, A_{\mu}(c, q)\right\}\)
\(a=b c \quad b=b_{1} b_{2}\)
\(A_{\mu}(l, q)=A_{\mu}(m n, q)\)
\(=A_{\mu}((b(n+c)-b n), q)>A_{\mu}(c, q)\)
and \(\left.N\left(b_{2} \geq A_{\mu}\left(b_{2}\right)\right)\right)\)
\(\leq \sup _{a=b c}\left\{\min \left\{N\left(b_{2}\right), A_{\mu}((b(n+c)-b n), q)\right\}\right.\),
\(=\mathrm{A}_{\mu}(\mathrm{bc}, \mathrm{q})=A_{\mu}(a, q)\).
Therefore \(N \circ A_{\mu} \circ A_{\mu} \subseteq A_{\mu}\).
Choose \(a, b, c, b_{1}, b_{2} \in N, q \in Q\) such that \((a, q)=(b c, q)\) and \((b, q)=\left(b_{1} b_{2}, q\right)\).

Then,
\(\left(N \circ B_{\mu} \circ B_{\mu}\right)(a, q)\)
\(=\inf _{a=b c} \max \left\{\left(N \circ B_{\mu}\right)(b, q), B_{\mu}(c, q)\right\}\)
\(=\)
\(\inf _{a=b c} \max \left\{\inf _{b=b_{1} b_{2}} \max \left\{N\left(b_{1}, q\right), B_{\mu}\left(b_{2}, q\right), B_{\mu}(c, q)\right\}\right.\)
\(=\inf _{a=b c} \max \left\{\inf _{b=b_{1} b_{2}}\left\{B_{\mu}\left(b_{2}, q\right), B_{\mu}(c, q)\right\}\right\}\)
\[
\begin{aligned}
& B_{\mu}(a, q)=B_{\mu}(b c, q) \\
& =B_{\mu}(b(n+c)-b n) \leq B_{\mu}(c, q)
\end{aligned}
\]
and
\[
=\inf _{a=b c} \max \left\{N\left(b_{2}, q\right), B_{\mu}(b(n+c)-b n)\right\}
\]
\[
=\inf _{a=b c} \max \left\{0, B_{\mu}(b c, q)\right\}
\]
\[
=B_{\mu}(\mathrm{bc}, \mathrm{q})
\]
\[
=B_{\mu}(\mathrm{a}, \mathrm{q})
\]

Therefore \(\left(N \circ B_{\mu} \circ B_{\mu}\right) \supseteq B_{\mu}\).
Thus \(\mu=\left(A_{\mu}, B_{\mu}\right)\) is an IQFS-bi-ideal of \(N\).

Theorem 3.6. Let \(\mu=\left(A_{\mu}, B_{\mu}\right)\) be any IQFS-bi-ideal of a near ring N . Then
\(A_{\mu}(\mathrm{lst}, \mathrm{q}) \geq \min \left\{A_{\mu}(\mathrm{s}, \mathrm{q}), A_{\mu}(\mathrm{t}, \mathrm{q})\right.\) and \(B_{\mu}(\mathrm{lst}, \mathrm{q}) \leq\) \(\max \left\{B_{\mu}(\mathrm{s}, \mathrm{q}), B_{\mu}(\mathrm{t}, \mathrm{q})\right\}\) for all \(1, \mathrm{~s}, \mathrm{t} \in \mathrm{N}\) and \(\mathrm{q} \in \mathrm{Q}\).

Proof. Assume that \(\left(A_{\mu}, B_{\mu}\right) \mathrm{N}\). Then
\(N \circ A_{\mu} \circ A_{\mu} \subseteq A_{\mu}\) and \(\left(N \circ B_{\mu} \circ B_{\mu}\right) \supseteq B_{\mu}\). Let \(1, \mathrm{~s}, \mathrm{t}\) and \(\mathrm{q} \in \mathrm{Q}\) be any element N . Then \(A_{\mu}(\mathrm{lst}, \mathrm{q}) \geq\)
\(\left(N \circ A_{\mu} \circ A_{\mu}\right)(\mathrm{lst}, \mathrm{q})\)
\[
\begin{aligned}
& =\sup _{l s t=p q} \min \left\{\left(N \circ A_{\mu}\right)(p), A_{\mu}(q)\right\} \\
& \geq \min \left(N \circ A_{\mu} \circ A_{\mu}\right)(\mathrm{ls}, \mathrm{q}), A_{\mu}(\mathrm{t}, \mathrm{q})
\end{aligned}
\]
\[
\begin{aligned}
& =\min \left\{\sup _{l s=z_{1} z_{2}} \min \left\{N\left(z_{1}, q\right), A_{\mu}\left(z_{2}, q\right)\right\}, A_{\mu}(t, q)\right\} \\
& \geq \min \left\{\operatorname { m i n } \left\{\mathrm{N}(1, \mathrm{q}), A_{\mu}(\mathrm{s}, \mathrm{q}), A_{\mu}(\mathrm{t}, \mathrm{q})\right.\right. \\
& =\min \left\{\min \left\{1, A_{\mu}(s, q), A_{\mu}(t, q)\right\}\right\} \\
& =\min \left\{A_{\mu}(s, q), A_{\mu}(t, q)\right\}
\end{aligned}
\]

This shows that \(A_{\mu}(l s t, q) \geq \min \left\{A_{\mu}(s, q), A_{\mu}(t, q)\right\}\) for all s,t \(\in \mathrm{N}\) and
\(B_{\mu}(l s t, q) \leq\left(N \circ B_{\mu} \circ B_{\mu}\right)(l s t, q)\)
\(=\inf _{l s t=p q} \max \left\{\left(N \circ B_{\mu}\right)(p), B_{\mu}(q)\right\}\)
\(=\max \left\{\left(N \circ B_{\mu}\right)(l s, q), B_{\mu}(t, q)\right\}\)
\(=\max \left\{\inf _{l s=z_{1} z_{2}} \max \left\{N\left(z_{1}, q\right), B_{\mu}\left(z_{2}, q\right)\right\}, B_{\mu}(t, q)\right\}\)
\(\leq \max \left\{\max \left\{N(l), B_{\mu}(s, q)\right\}, B_{\mu}(t, q)\right\}\)
\(=\max \left\{\max \left\{1, B_{\mu}(\mathrm{s}, \mathrm{q}), B_{\mu}(\mathrm{t}, \mathrm{q})\right\}\right.\)
\(=\max \left\{A_{\mu}(s, q), B_{\mu}(t, q)\right\}\)
This shows that
\(B_{\mu}(l s t, q) \leq \max \left\{B_{\mu}(s, q), B_{\mu}(t, q)\right\} \forall l, s, t \in N\) and \(q \in Q\).

\section*{IV. Conclusion}

In this article, the notion of IQFS- bi-ideals of a near-rings and derived some properties of these ideals.

\section*{References}
[1] S. Abou-Zaid, On fuzzy subnear-ring and ideals, Fuzzy sets and Systems, 44 (1991), 139-146.
[2] K.T. Atanasov, Intuitionstic fuzzy sets, J. Fuzzy Math. 20 (1) (1986), 87-96.
[3] R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum. 10 (1987), 37-46.
[4] Y.U. Cho and Y.B. Jun, On intuitionistic fuzzy Rsubgroups of near-rings, J. Appl. Math. Comput. 18 (2005), 665-677.
[5] Y.B. Jun, K.H. Kim and Y.H. Yon. Intuitionistic fuzzy ideals of near-rings, J. Inst. Math. Comput. Sci., Math. Ser. 12 (1999), 221-228.
[6] Liu, W. Fuzzy invarient subgroups and Fuzzy ideals, Fuzzy Sets and System, 8, 133-139.
[7] O. Kazanci, S. Yamak and S. Yilmaz. On intuitionistic \(Q\)-fuzzy \(R\)-subgroups of near-rings, Int. Math. Forum, 2(59) (2007), 2899-2910.
[8] K.H. Kim, On intuitionistic \(Q\)-fuzzy semiprime ideals in semigroups, Adv. Fuzzy Math. 1 (2006), 15-21.
[9] Manikantan, T. fuzzy bi-ideals of near-rings, Journal of Fuzzy Mathematics, 17 ,(3)(2009), 659-671.
[10] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Application, 35 (1971), 512-517.
[11] Saikia H.K. and L.K Barthakur, On fuzzy \(N\) subgroups and fuzzy ideals of near-rings and near-ring groups, J. Fuzzy Mathematics, 11,(3)(2003), 567-580.
[12] T. Tamizh Chelvam and N. Ganesan, On bi-ideals of near-rings, Indian J.pure appl.Math., 18,(11)(1987), 10021005.
[13] L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.```

